Содержание
- Генная инженерия
- Доноры генома
- Как передаются наследственные заболевания?
- Может ли генная инженерия подарить здоровье и карие глаза
- Методы и анализ
- Разработки
- Первое клонирование животных
- Новое секвенирование и базы данных
- Применение генной инженерии в промышленности
- Что такое геном человека (для тех, кто прогулял уроки биологии)
- Близкое родство
- Приложения и предлагаемые преимущества
- «Кирпичик в здании науки»
- Вывод
Генная инженерия
Сейчас все большее количество правительств разных стран готовится к тому, чтобы разрешить эксперименты по редактированию генома на эмбрионах человека. Некоторые страны уже даже разрешили это, например, Великобритания.
Справедливости ради, пока мы не говорим о полностью готовом человеке с измененными генами, но все к этому идет. Вы же понимаете? Пока Великобритания разрешает ставить эксперименты только над эмбрионами, выращенными в лабораторных условиях. При этом они обязательно должны быть уничтожены через 14 дней после начала эксперимента. То есть формально нам это ничем не угрожает. Вопрос только в том, для чего это нужно тому, кто это разрешил. Явно не из любопытства. Что-то подсказывает, что как и многие передовые разработки, сначала это будет применяться в военных целях, ведь именно так можно получить универсального солдата. Он не будет хотеть есть или пить. Он не будет уставать или бояться взрывов. Небольшая корректировка генов и супер-солдат готов.
Более того! Такой способ воздействия, если человечество ему научится, может выйти из-под контроля. Или просто ”не в тех руках” это может стать оружием геноцида. Как видим, мрачных последствий куда больше, чем радужных. Поэтому прежде, чем делать что-то подобное, надо основательно взвесить все за и против. Даже клонирование на фоне этого может показаться милой забавой. Хотя изначально все были против этого.
Может не надо это трогать?
Но может все же что-то положительное в этом есть и можно дать шанс ученым доказать, что они не зря открывали инструменты редактирования? Какие преимущества редактирование генов может принести человеку?
Доноры генома
В международном HGP государственного сектора IHGSC исследователи собрали образцы крови (женской) или спермы (мужской) у большого числа доноров. Лишь некоторые из множества собранных образцов были обработаны как ресурсы ДНК. Таким образом, личность донора была защищена, поэтому ни доноры, ни ученые не могли знать, чья ДНК была секвенирована. Клоны ДНК, взятые из множества различных библиотек, были использованы в общем проекте, при этом большая часть этих библиотек была создана Питером Дж. Де Йонгом . Большая часть последовательности (> 70%) эталонного генома, полученного с помощью общедоступного HGP, была получена от одного анонимного донора-мужчины из Буффало, штат Нью-Йорк ( кодовое имя RP11; «RP» относится к Центру комплексных онкологических заболеваний в Розуэлл-Парке ).
Ученые HGP использовали лейкоциты из крови двух доноров-мужчин и двух доноров-женщин (случайным образом выбранных из 20 доноров) — каждый донор дал отдельную библиотеку ДНК. Одна из этих библиотек (RP11) использовалась значительно чаще, чем другие, из соображений качества. Одна небольшая техническая проблема заключается в том, что мужские образцы содержат чуть больше половины ДНК половых хромосом (одна Х-хромосома и одна Y-хромосома ) по сравнению с женскими образцами (которые содержат две Х-хромосомы ). Остальные 22 хромосомы (аутосомы) одинаковы для обоих полов.
Хотя основная фаза секвенирования HGP была завершена, исследования вариации ДНК продолжались в рамках Международного проекта HapMap , целью которого было выявление паттернов групп однонуклеотидного полиморфизма (SNP) (называемых гаплотипами или «haps»). Образцы ДНК для HapMap были взяты у 270 человек; Народ йоруба в Ибадане , Нигерия ; Японцы в Токио ; Китайцы хань в Пекине ; и ресурс Французского центра исследований полиморфизма человека (CEPH), который состоит из жителей Соединенных Штатов, имеющих родословную из Западной и Северной Европы .
В частном проекте Celera Genomics для секвенирования использовалась ДНК пяти разных людей. Ведущий ученый Celera Genomics в то время, Крейг Вентер, позже признал (в публичном письме в журнал Science ), что его ДНК была одним из 21 образца в пуле, пять из которых были отобраны для использования.
Как передаются наследственные заболевания?
Организм человека состоит из триллионов клеток. Каждая клетка имеет ядро, которое содержит хромосомы. Каждая хромосома состоит из плотно свернутых нитей дезоксирибонуклеиновой кислоты (ДНК).
Гены — это инструкции по сборке белков в нашем организме, которые определяют специфические черты каждого человека, например, цвет глаз или волос. Большинство клеток в организме обычно содержат 46 хромосом, организованных в 23 пары. В каждой из этих 23 пар есть одна унаследованная хромосома от отца и одна — от матери. Из 23 пар 22 пары одинаковые у женских и мужских организмов, а одна оставшаяся определяет, являетесь вы мужчиной (XY) или женщиной (XX).
Мутации, из-за которых возникают наследственные заболевания, могут иметь доминантный или рецессивный характер наследования.
Доминантное наследование означает, что только одна копия гена — от матери или отца — должна иметь мутацию (или патогенный вариант гена) для проявления признака или заболевания. А при рецессивном типе человек наследует две измененные копии одного и того же гена.
Аутосомно-доминантный паттерн наследования
При аутосомно-доминантном наследовании заболеваний генетически обусловленная болезнь проявляется в том случае, если у человека есть хотя бы один мутированный ген, и этот ген не расположен на половых (Х и Y) хромосомах.
Болезнь Хантингтона и синдром Марфана — два примера аутосомно-доминантных болезней. Мутации в генах BRCA1 и BRCA2, которые также связаны с раком молочной железы, передаются по этой схеме.
Аутосомно-рецессивный паттерн наследования
При аутосомно-рецессивном наследовании мутируют обе копии генов. Чтобы унаследовать аутосомно — рецессивное заболевание, такое как муковисцидоз, спинальная мышечная атрофия, или фенилкетонурия (ФКУ), оба родителя должны быть носителями. Ребенок наследует две копии дефектного гена — по одной от каждого родителя. Например, люди, имеющие одну копию гена с мутацией, а вторую — без мутации, называются носителями, потому что сами они здоровы.
Х-сцепленное рецессивное наследование
В Х-сцепленном рецессивном наследовании мутированный ген находится на Х-хромосоме. Болезнь проявляется только в случае, если другой Х-хромосомы с нормальной копией того же гена у человека нет.
Мышечная дистрофия Дюшенна, некоторые виды дальтонизма и гемофилия А — примеры рецессивных заболеваний, связанных с X-хромосомой. Мужчина с рецессивным заболеванием, связанным с X-хромосомой, передаст свою нетронутую Y-хромосому сыновьям, и ни один из них не пострадает. Если он передаст свою Х-хромосому (с дефектным геном) своим дочерям, то все они будут носителями болезни. У его дочерей может не быть симптомов или только легкие признаки заболевания, но они могут передать мутированный ген своим детям.
Женщины-носители рецессивного заболевания, связанного с X-хромосомой, часто имеют лёгкие признаки заболевания или вообще не имеют симптомов. Это связано с тем, что у женщин-носителей есть одна нормальная копия гена и одна мутированная копия. Нормальная копия обычно компенсирует дефектную копию в женском организме, в отличие от мужчин, у которых только одна X-хромосома.
Женщины, имеющие только один патологический ген, передают заболевание в среднем половине своих детей вне зависимости от пола. Женщины же, имеющие два патологических гена, передают заболевание всем своим детям. К таким заболеваниям относятся гемофилия А и дальтонизм.
Если вы знаете или предполагаете, что у вас или вашего партнера в семейной истории есть какое-либо генетическое заболевание, вы можете определить это с помощью Генетического теста Атлас. Генетическое консультирование поможет вам узнать о методах лечения, профилактических мерах и репродуктивных возможностях.
Может ли генная инженерия подарить здоровье и карие глаза
— То есть, генная инженерия возможна – пусть и в порядке лабораторного эксперимента?
— Чем сложнее организм, тем труднее это сделать. Для получения генномодифицированных лабораторных организмов такие подходы используются уже давно. Область применения этих методов – генная модификация сельхозкультур, сельскохозяйственных животных, но в особенности бактерий.
Однако перенести разработанные для экспериментальных организмов подходы на человека напрямую невозможно. Методы, которыми работают на животных и растениях, недостаточно специфичны. Часть полученных организмов нежизнеспособны, часть имеет «не те» признаки, их просто выбраковывают. Примером может служить «золотой рис». Его выводили методом генной модификации, добавив к геному риса два гена других организмов, что способствовало накоплению бета-каротина в его семенах. Действительно, был получен рис с заданными характеристиками, но его урожайность оказалась снижена. Предполагается, что причина этого – неудачные места встраивания новых генов.
С человеком цена ошибки слишком высока, поэтому эксперименты на людях очень ограничены. Любые генетические перестройки – риск перерождения клетки в раковую или её гибели. Естественно, можно обрабатывать культуру клеток или, например, колонию бактерий, но в итоге стараются выбирать только те клетки, которые имеют определённые характеристики, являющиеся признаком того, что модификация их генома действительно произошла.
— Можно ли поменять весь геном взрослого человека?
— Нет, работать со всеми клетками взрослого человека сейчас невозможно, да и не нужно. Организм, имеющий тяжёлое генетическое нарушение, влияющее на функции каждой клетки, просто погибает пренатально. Совместимые с жизнью генетические нарушения в основном проявляются в каком-то определённом органе или системе органов. Именно они и будут являться мишенями генных инженеров. Если ты хочешь карие глаза, то совершенно необязательно модифицировать ДНК пяток. Отработанных методик таких манипуляций со стабильным предсказуемым результатом на человеке пока нет, но генная инженерия развивается очень быстро, так что ждём!
— Первые опыты по использованию генной инженерии в лечении генетических заболеваний уже есть?
— В литературе описан успешный опыт генной терапии булёзного эпидермолиза (редкое хроническое наследственное заболевание, в результате которого непрерывно образуются раны на коже и слизистых оболочках – прим. ред.). Стволовые клетки кожи пациента обрабатывали вирусоподобными частицами, содержащими нормальную последовательность гена, выведенного из строя мутациями. Полученные клетки заселяли в повреждённые участки кожи ребёнка, и кожные покровы восстанавливались!
Были и попытки влиять на организм взрослого человека. Для этого в оболочку аденовирусной частицы упаковывали нужный генетический материал и с помощью аэрозоля обрабатывали дыхательные пути пациентов. Вирусные частицы прикреплялись к клеткам эпителия и впрыскивали в клетки ДНК «нужного» гена. Проводились и эксперименты по обработке вирусоподобными частицами с «правильными» генами клеток крови пациента.
— Поэтому сейчас наиболее перспективное направление – модификация собственных стволовых клеток человека и запуск их обратно в организм. Уже есть методики забора фибробластов из кожи, перевод их обратно в состояние стволовых клеток и перепрограммирование в некоторые другие типы клеток. Это сейчас фактически остриё науки, на это брошено много сил и финансов (правда, не у нас в стране). Выращенные таким образом генетически «подправленные» клетки могут помочь человеку побороть СПИД и некоторые виды рака.
Пересадка собственных митохондрий недавно была использована у новорождённых с сердечно-сосудистыми патологиями в США. Вместо плохо работающего собственного сердца, с разрушенными от кислородного голодания митохондриями, не стали ставить донорское; в повреждённый участок сердечной мышцы вводили митохондрии, полученные из мышечной ткани детей. Клетки сердца захватили митохондрии и начинали работать нормально. В результате из 11 больных детей восьмерым не потребовалась трансплантация сердца! Хотя такую манипуляцию нельзя назвать генно-инженерной, но она создаёт задел для лечения пациентов, в том числе и «чужими» митохондриями.
Вообще в медицине много надежд возлагается именно на использование собственных немного доработанных клеток, и именно в связи с этим, я думаю, будет пересматриваться законодательство в области генной модификации по отношению к человеку.
26.08.2018
Беседовала Ирина Ильина
физиология, методы лечения, ЭКО Другие статьи автора
Методы и анализ
Процесс определения границ между генами и другими особенностями необработанной последовательности ДНК называется аннотацией генома и относится к сфере биоинформатики . В то время как опытные биологи делают лучших аннотаторов, их работа продвигается медленно, и компьютерные программы все чаще используются для удовлетворения требований высокой производительности проектов секвенирования генома. Начиная с 2008 года, была представлена новая технология, известная как RNA-seq, которая позволила ученым напрямую секвенировать матричную РНК в клетках. Это заменило предыдущие методы аннотации, которые полагались на свойства, присущие последовательности ДНК, на прямое измерение, которое было гораздо более точным. Сегодня аннотирование генома человека и других геномов основывается в первую очередь на глубоком секвенировании транскриптов в каждой ткани человека с использованием RNA-seq. Эти эксперименты показали, что более 90% генов содержат по крайней мере один, а обычно несколько альтернативных вариантов сплайсинга, в которых экзоны комбинируются по-разному для получения 2 или более генных продуктов из одного и того же локуса.
Геном, опубликованный HGP, не отражает последовательность генома каждого человека. Это комбинированная мозаика небольшого числа анонимных доноров европейского происхождения. Геном HGP — это основа для будущей работы по выявлению различий между людьми. Последующие проекты секвенировали геномы нескольких различных этнических групп, хотя на сегодняшний день существует только один «эталонный геном».
Выводы
Основные результаты чернового (2001 г.) и полного (2004 г.) геномных последовательностей включают:
- У человека примерно 22 300 генов, кодирующих белок, столько же, сколько и у других млекопитающих.
- В геноме человека значительно больше сегментарных дупликаций (почти идентичных, повторяющихся участков ДНК), чем предполагалось ранее.
- На момент публикации проекта последовательности менее 7% семейств белков оказались специфичными для позвоночных.
Достижения
Первая распечатка генома человека, которая будет представлена в виде серии книг, выставленных в Wellcome Collection , Лондон.
Геном человека насчитывает примерно 3,1 миллиарда пар оснований . Проект «Геном человека» был начат в 1990 году с целью секвенирования и идентификации всех пар оснований в наборе генетических инструкций человека, поиска генетических корней болезни и затем разработки методов лечения. Считается мегапроектом .
Геном был разбит на более мелкие части; приблизительно 150 000 пар оснований в длину. Затем эти части были лигированы в вектор, известный как « бактериальные искусственные хромосомы », или ВАС, которые получены из бактериальных хромосом, созданных с помощью генной инженерии. Векторы, содержащие гены, могут быть вставлены в бактерии, где они копируются аппаратом репликации бактериальной ДНК . Каждая из этих частей была затем по отдельности секвенирована как небольшой проект «дробовика», а затем собрана. Более крупные, 150 000 пар оснований, образуют хромосомы. Этот подход известен как , потому что геном сначала разбивается на относительно большие фрагменты, которые затем отображаются на хромосомах перед отбором для секвенирования.
Организация Объединенных Наций по вопросам образования, науки и культуры (ЮНЕСКО) служила важным каналом для вовлечения развивающихся стран в проект «Геном человека».
Разработки
Следующим шагом с учетом последовательности было выявление генетических вариантов, повышающих риск таких распространенных заболеваний, как рак и диабет.
Ожидается, что подробное знание генома человека откроет новые возможности для достижений в медицине и биотехнологии . Явные практические результаты проекта проявились еще до завершения работ. Например, ряд компаний, таких как Myriad Genetics , начали предлагать простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак груди , нарушения гемостаза , муковисцидоз , заболевания печени и многие другие. Кроме того , этиология для рака , болезней Альцгеймера и других областей клинического интереса считается скорее всего выгодами от генома информации и , возможно , может привести в долгосрочной перспективе к значительным успехам в их управлении.
Для биологов также есть много ощутимых преимуществ. Например, исследователь, исследующий определенную форму рака, мог сузить свой поиск до определенного гена. Посетив базу данных генома человека во всемирной паутине , этот исследователь может изучить то, что другие ученые написали об этом гене, включая (потенциально) трехмерную структуру его продукта, его функции, его эволюционные отношения с другими людьми. гены или гены мышей, дрожжей или плодовых мушек, возможные вредные мутации, взаимодействия с другими генами, тканями организма, в которых этот ген активирован, и заболеваниями, связанными с этим геном или другими типами данных. Кроме того, более глубокое понимание процессов заболевания на уровне молекулярной биологии может определить новые терапевтические процедуры
Учитывая установленную важность ДНК в молекулярной биологии и ее центральную роль в определении фундаментальной работы клеточных процессов , вполне вероятно, что расширенные знания в этой области будут способствовать достижениям медицины во многих областях, представляющих клинический интерес, которые, возможно, были бы невозможны без них.
Анализ сходства между последовательностями ДНК разных организмов также открывает новые возможности в изучении эволюции . Во многих случаях вопросы эволюции теперь можно сформулировать в терминах молекулярной биологии ; действительно, многие важные вехи эволюции (появление рибосом и органелл , развитие эмбрионов с строением тела, иммунная система позвоночных ) могут быть связаны с молекулярным уровнем. Ожидается, что данные этого проекта прояснят многие вопросы о сходствах и различиях между людьми и нашими ближайшими родственниками ( приматами и другими млекопитающими ).
Этот проект вдохновил и проложил путь к геномной работе в других областях, например, в сельском хозяйстве. Например, изучая генетический состав Tritium aestivum , наиболее часто используемой в мире мягкой пшеницы, было получено большое понимание того, каким образом одомашнивание повлияло на эволюцию растения. Исследуется, какие локусы наиболее восприимчивы к манипуляциям и как это проявляется с точки зрения эволюции. Генетическое секвенирование позволило впервые ответить на эти вопросы, поскольку конкретные локусы можно сравнивать в диких и одомашненных штаммах растения. Это позволит добиться прогресса в области генетической модификации в будущем, что, помимо прочего, может дать более здоровые и устойчивые к болезням культуры пшеницы.
Первое клонирование животных
Всемирно известная овечка Долли была первым млекопитающим, клонированным из взрослой клетки. Подвиг был новаторским в то время как животные, такие как коровы были ранее клонированы из клеток эмбриона. Долли показала, что даже ДНК все еще может быть использован для создания всего организма.
Долли была создана учеными Рослинского института в Шотландии, из вымени клетки шестилетней белой овцы. Ученые нашли способ перепрограммировать клетки, которые затем вводили в яйцеклетку из которой её родные ядра были удалены. Затем яйцо было культивировано до стадии, прежде чем быть имплантировано в суррогатную мать.
Клонирование животных из взрослых клеток – это сложный процесс, и из 277 попыток только Долли была единственным ягненком, чтобы выжить. Она продолжала жить в безмятежном существовании в Рослинском институте и была способна производить нормальное потомство. После ее смерти (её усыпили), стала чучелом и выставлена на показ.
Новое секвенирование и базы данных
Исследовать многообразие РНК не так просто по многим причинам, от их высокой лабильности до малых размеров. Однако появление высокопроизводительных методов параллельного секвенирования (когда миллионы фрагментов ДНК из одного образца читаются одновременно), оно же секвенирование нового поколения (next-generation sequencing, NGS), значительно ускорило поиск функциональных участков генома.
Различные платформы для NGS позволяют читать от миллиона до десятков миллиардов коротких последовательностей (отсеквенированные «за один проход» участки называют ридами, от английского read) длиной 50–600 нуклеотидов каждая. К наиболее популярным платформам относятся Illumina и IonTorrent, и все больше внимания привлекают к себе платформы для секвенирования единичных молекул — Pacific Biosciences, нанопоровое секвенирование Oxford Nanopore, Helicos Biosciences HeliScope (компания Helicos объявлена банкротом, но технология лицензирована другим компаниям). Последним не нужно нарабатывать много копий ДНК для секвенирования — они действительно работают с отдельными молекулами! Другой их важный плюс в том, что они позволяют прочитывать значительно более длинные риды, до 10–60 тысяч нуклеотидов. Именно благодаря этому качеству, например, метод нанопорового секвенирования с успехом применили для секвенирования богатого повторами центромерного участка Y-хромосомы человека.
Кроме того, появились методы секвенирования РНК — сначала через создание ДНК-копий, а потом и прямые. Изначально они создавались для количественного определения экспрессии генов, но также способствовали обнаружению ранее не известных РНК, как кодирующих, так и не кодирующих.
Благодаря методам NGS базы данных генов lncRNA и других РНК всего за десятилетие резко выросли, и каталоги генов человека теперь содержат больше генов РНК, чем генов белков. Кроме того, секвенирование РНК позволило установить, что альтернативный сплайсинг, альтернативное инициирование транскрипции и альтернативное прерывание транскрипции происходят гораздо чаще, чем полагали, и затрагивают до 95% человеческих генов. Следовательно, даже когда мы узнаем местоположение всех генов в геноме, нужно будет выявить все изоформы этих генов, а также определить, выполняют ли эти изоформы какие-либо функции или просто представляют собой ошибки сплайсинга.
Задача по составлению каталога всех генов по-прежнему не решена. В последние 15 лет только две исследовательские группы составляют, корректируют и пополняют список генов: RefSeq и Ensembl / Gencode. Первая поддерживается Национальным центром биотехнологической информации при Национальных институтах здравоохранения США, вторая — Европейской молекулярно-биологической лабораторией. Кстати, Gencode — подпроект консорциума ENCODE, «масштабной научной экспедиции в пустыни генома, не кодирующего белки» (см. «Химию и жизнь» № 10, 2012). В этих каталогах есть сотни различий по белок-кодирующим генам, тысячи — по генам длинных некодирующих РНК; имеются существенные расхождения и в других группах (см. таблицу 2).
Таблица 2. Количество разных типов генов в базах данных Gencode, RefSeq, CHESS
Типы генов | Gencode | RefSeq | CHESS |
---|---|---|---|
Белок-кодирующие гены | 19 901 | 20 345 | 21 306 |
Гены длинных некодирующих РНК | 15 779 | 17 712 | 18 484 |
Антисмысловые РНК | 5501 | 28 | 2694 |
Другие некодирующие РНК | 2213 | 13 899 | 4347 |
Псевдогены | 14 723 | 15 952 | — |
Общее число транскриптов (видов РНК) | 203 835 | 154 484 | 323 827 |
По: BMC Biology, 2018, 16:94
В 2017 году сотрудники Университета Джонса Хопкинса под руководством Стивена Зальцберга создали еще одну базу данных генов человека — CHESS. Они использовали данные глубокого секвенирования РНК, чтобы заново получить информацию о всех продуктах транскрипции в разнообразных тканях человеческого организма, и отмечают, что существенно пополнили списки генов. Примечательно, что новая база включает все белок-кодирующие гены как Gencode, так и RefSeq, поэтому пользователям CHESS не нужно решать, какую базу данных они предпочитают. Создатели CHESS отмечают, что более обширная база с большей вероятностью содержит последовательности, ошибочно отнесенные к генам, но лучше потом удалить такую последовательность, чем пропустить существующий ген.
Применение генной инженерии в промышленности
Более того, можно смело говорить о том, что генное модифицирование уже применяется на практике для достижения определенных результатов. Я говорю о генно-модифицированных организмах — ГМО.
Самым простым примером, как для понимания преимуществ метода, так и для самих генетиков является создание модифицированных кисломолочных бактерий. Дело в том, что когда на производстве вирусы бактериофаги попадают в закваску, они уничтожают культуру полезных микроорганизмов. В итоге это приводит к тому, что партия оказывается испорченной, а производитель несет огромные убытки. Именно поэтому устойчивые к бактериофагам микроорганизмы решают массу проблем.
Если бактериофаги попадают на производство, пропадают просто огромные объемы продукции.
Что такое геном человека (для тех, кто прогулял уроки биологии)
Вся наша жизнь закодирована в молекулах ДНК – дезоксирибонуклеиновой кислоты. Удивительно, но все эти огромные молекулы состоят из комбинации всего лишь четырех основных элементов: азотистых оснований аденина, гуанина, тимина и цитозина (их обычно для краткости обозначают первыми буквами – A, G, T, C). Сложные последовательности этих элементов служат своеобразными матрицами, на которых синтезируются РНК – рибонуклеиновые кислоты. РНК — «рабочие лошадки» нашего организма, у каждой – своя специализация. Одни участвуют в синтезе белков, задавая верную последовательность элементов, другие поставляют аминокислоты к месту синтеза белков, третьи – «перекраивают» своих собратьев, катализируя реакции с участием РНК.
А в Википедии приводят такой пример: «ДНК нередко сравнивают с чертежами для изготовления белков. Развивая эту инженерно-производственную аналогию, можно сказать, что, если ДНК — это полный набор чертежей для изготовления белков, находящийся на хранении в сейфе директора завода, то матричная РНК — временная рабочая копия чертежа отдельной детали, выдаваемая в сборочный цех».
Выбирайте аналогию по своему вкусу!
Молекулы ДНК есть в любой клетке нашего организма, в которой есть ядро. Молекулы – потому что знаменитые спирали ДНК «нарублены» на 46 различных по размеру «кусков», соединенных попарно – это 23 пары наших хромосом.
Во всех аутосомах (не-половых хромосомах) и хромосома, доставшаяся от папы, и доставшаяся от мамы, содержат подобные гены на одних и тех же участках. Подобные – поскольку гены, у всех нас, вообще говоря, разные. К примеру, на участке, где располагается ген, ответственный за цвет волос, в одной хромосоме из пары окажется ген мамы-блондинки, а на другой – папы-брюнета. В таком случае один из генов будет доминировать, а второй, рецессивный, ждать своего часа. Если именно его передадут по наследству, и если в паре с ним окажется такой же рецессивный ген, то у него будет возможность проявить себя.
Любые родители хотели бы вырезать зловредный ген из своей ДНК и заменить его на здоровый, обезопасив потомков. И тут мы снова возвращаемся к вопросу: неужели это реально?
В качестве эксперта мы привлекли кандидата биологических наук Светлану МИХАЙЛОВУ (pooha), научного сотрудника лаборатории молекулярной генетики человека Института цитологии и генетики СО РАН. |
Близкое родство
Основные линии Y-хромосомы маркируют очень большие группы родственников, для некоторых линий включающие десятки миллионов мужчин. Например, возникшая в позднем Средневековье линия, которая была свойственна, как считается, Чингисхану и его родственникам, распространена сейчас у нескольких миллионов мужчин, живущих в самых разных странах Евразии. Это родство уходит корнями в глубокое прошлое, и возможности определения таких групп родства диктуются скоростью накопления мутаций.
Мутации, о которых шла речь до сих пор, — это в большинстве случаев «точечная» замена одного нуклеотида на другой, поэтому определяемые ими линии называют SNP-гаплогруппы (аббревиатура от англ. Single Nucleotide Polymorphism — ‘однонуклеотидный полиморфизм’). Но есть особый тип мутаций, которые возникают гораздо чаще в эволюционном масштабе времени. В некоторых участках Y-хромосомы имеются короткие тандемные повторы (англ. Short Tandem Repeats, STR), состоящие всего из нескольких «букв». Число STR может относительно быстро меняться в череде поколений, однако у близких родственников, получивших одну и ту же хромосому от общего предка, оно обычно совпадает. Сочетание числа повторяющихся звеньев в разных местах хромосом (так называемые STR-гаплотипы) маркируют группы близких родственников, которые в некоторых случаях до сих пор характеризуются компактным проживанием.
Очевидно, что в случае SNP-гаплогрупп по «диагностическому» локусу можно найти только два варианта, а для STR-гаплотипов — десятки, и каждый вариант со своим числом повторов. Если бы все население Земли было охарактеризовано по большому числу STR- и SNP-вариантов Y-хромосомы, то по анализу любого образца ДНК можно было бы однозначно определить группу родственников по мужской линии, являющихся носителями определенной гаплогруппы. Конечно, пока невозможно собрать и проанализировать образцы ДНК у всех людей, но можно — у представителей населения различных регионов, создать базы данных и геногеографические карты, отражающие распространение различных гаплогрупп. Это позволит определить наиболее вероятный регион, из которого происходит носитель той или иной линии. Именно такой подход был использован при поиске региона происхождения мужчины, совершившего теракт в аэропорту Домодедово. Генетическая экспертиза — от получения ДНК из образца тканей террориста, подорвавшего себя вместе с другими пассажирами, до указания наиболее вероятного региона происхождения — заняла два дня. Это указание послужило ориентиром для следователей в проводимых ими розыскных мероприятиях, и в итоге личность террориста была установлена менее чем за неделю. Можно сказать, что следствию повезло — террорист происходил из того региона, который был уже обследован генетиками.
Аналогичным образом была проведена генетическая экспертиза ДНК из следов, оставленных новосибирским серийным педофилом, который на протяжении десяти лет оставался неуловимым для следственных органов. Анализ ДНК указал на вероятный этнорегион происхождения преступника, что значительно сузило круг поиска и позволило установить его личность менее чем за месяц.
Возможность проведения таких экспертиз возникла после многолетних фундаментальных исследований, в ходе которых были собраны десятки тысяч биологических образцов от людей, представляющих десятки популяций из всех регионов России, была проведена генетическая характеристика этих образцов и созданы базы данных маркеров населения исследованных регионов России.
В нашей стране такие фундаментальные исследования были начаты в Московском государственном университете имени М. В. Ломоносова, а затем широко развернуты в Институте общей генетики имени Н. И. Вавилова РАН (ИОГен) профессором Ю. Г. Рычковым []. Его ученики продолжают эти работы уже более 40 лет в ИОГен, а теперь и в других учреждениях России []. Сначала генетические исследования населения велись на основе анализа биохимических маркеров крови, затем — по анализу ДНК. Вновь получаемые данные не опровергали ранее полученные знания, но делали их более детальными. Разработку в России фундаментальных основ ДНК-идентификации инициировали в академических институтах Е. И. Рогаев и П. Л. Иванов . Работа этих исследователей и их коллег была отмечена Государственной премией (1996), а накопленный опыт и разработанные технологии использованы в обеспечении выполнения принятого в 2008 г. закона «О государственной геномной регистрации в Российской Федерации».
Приложения и предлагаемые преимущества
Секвенирование генома человека приносит пользу во многих областях, от молекулярной медицины до эволюции человека . Проект «Геном человека» посредством секвенирования ДНК может помочь нам понять болезни, в том числе: генотипирование конкретных вирусов для направления соответствующего лечения; выявление мутаций, связанных с различными формами рака ; дизайн лекарств и более точное прогнозирование их эффектов; продвижение в области судебно- прикладных наук; биотопливо и другие энергетические приложения; сельское хозяйство , животноводство , биопереработка ; оценка рисков ; биоархеология , антропология и эволюция . Еще одно предлагаемое преимущество — это коммерческое развитие исследований в области геномики, связанных с продуктами на основе ДНК, многомиллиардная отрасль.
Последовательность ДНК хранится в базах данных, доступных каждому в Интернете . США Национальный центр биотехнологической информации (и родственные организации в Европе и Японии) дом последовательности гена в базе данных известной как GenBank , вместе с последовательностями известных и гипотетических генов и белков. Другие организации, такие как UCSC Genome Browser в Калифорнийском университете в Санта-Крузе и Ensembl, предоставляют дополнительные данные и аннотации, а также мощные инструменты для их визуализации и поиска. Компьютерные программы были разработаны для анализа данных, потому что сами данные трудно интерпретировать без таких программ. Вообще говоря, достижения в области технологии секвенирования генома следовали закону Мура , концепции компьютерных наук, которая гласит, что интегральные схемы могут увеличиваться в сложности с экспоненциальной скоростью. Это означает, что скорость, с которой можно секвенировать целые геномы, может увеличиваться с той же скоростью, что и при разработке вышеупомянутого проекта «Геном человека».
«Кирпичик в здании науки»
Однако российские коллеги канадских учёных не столь оптимистичны в оценках проведенного исследования.
Ясно, что в ходе эволюции некоторые гены претерпели изменения и не могут оставаться идентичными тем, которые были сотни миллионов лет назад, утверждает академик.
«Очевидно, что кошка с собакой разные. Но, например, иммунная система людей практически ничем не отличается от той, что есть у других животных. А вот мозг — совсем другое дело, большие полушария у нас более развиты. В результате эволюции у всех видов появились какие-то особенности. Но, с точки зрения генетики, человек — абсолютно обычный организм», — заключил Лукьянов.
Вывод
Все данные будут подробно изложены в генетической карте человеческого организма. Претворение в жизнь такого сложного научного проекта дало не только колоссальные теоретические знания для фундаментальных наук, но и оказало невероятное влияние на само понимание наследственности. Это в свою очередь, не могло не отразиться на процессах предупреждения и лечения наследственных болезней.
Данные, полученные учеными, помогли ускорить другие молекулярные исследования и способствовать эффективному поиску генетической основы в заболеваниях, передающихся по наследству, и предрасположенности к ним. Результаты смогут повлиять на обнаружение соответствующих лекарств для профилактики множества заболеваний: атеросклероза, сердечной ишемии, болезней психического и онкологического характера.